Skip to product information
1 of 3

CSF CHARGE-AIR COOLER MANIFOLD FOR A90/A91 TOYOTA SUPRA AND BMW G-SERIES (B58)

CSF CHARGE-AIR COOLER MANIFOLD FOR A90/A91 TOYOTA SUPRA AND BMW G-SERIES (B58)

Regular price $4,299.00 USD
Regular price Sale price $4,299.00 USD
Sale Sold out
Shipping calculated at checkout.

CSF is proud to announce its most advanced cooling system to date – the new Charge-Air Cooler Manifold for A90/A91 Toyota Supra and BMW G-Series (B58).

With the larger and more efficient water-to-air intercooler performance, lower pressure drop across the system, included fuel rail, kit for top feed port injection, and several other industry-leading features, the CSF Super Manifold will allow B58 owners to maximize the performance of their vehicles and push the limits further than what has been previously possible with this new platform.

The OEM water-cooled charge air cooler intake manifold for the B58 engine is adequate in cars with little or no modifications, but starts to really show an apparent weakness in cars that have bolt-on modifications, turbo upgrades, increased fueling (such as port injection), and performance tuning. Also, the OEM intercooler system has been known to suffer from heat soak in demanding racing conditions such as time attack, endurance racing, drag racing, and drifting, as well as spirited driving on the street. This can cause the car to pull timing out of the engine due to high intake air temperatures (IATs), and then can cause “limp mode” once temperatures reach a certain threshold, as the vehicle’s ECU will cut power to protect the engine.

Summary of Testing
Faster recovery of intake air temperatures
~30°F reduction of intake air temperatures (IAT’s) compared to OEM
Less pressure drop compared to OEM core
Puts less stress on the turbo system, allowing more boost to be made at higher targets
Avoided going into limp mode after prolonged demanding conditions, simulating motorsports use
On a stage 2 car with bolt-on upgrades, making ~400whp, comparing dyno run 19 between CSF and OEM, an increase of ~26whp and 11wtq were achieved
The performance increase and delta between CSF and OEM will be bigger as power is increased in the vehicle
Interestingly enough, the CSF/VF manifold had much lower inlet temperatures, right about 230 degrees or 30 degrees cooler than the stock manifold while the outlet temperatures were about 6 degrees cooler, under 125 degrees. There is a lot more to the data that first meets the eye. The lower inlet temperatures are an indicator that the restriction to airflow across the core is much lower. This is to be expected of the larger frontal area of the core. With less intake restriction, the compressor of the engine’s turbo is running much farther away from the surge line in a more efficient area of the compressor map. With greater efficiency, the turbo is heating the intake air a lot less. Since the compressor is working much more efficiently, the turbine doesn’t need to recover as much power from the exhaust stream to produce the same boost and thus there is less backpressure. This in turn increases the engine’s total volumetric efficiency. This is a synergistic cascade that will increase power and reduce strain on the engine and its components which has a much more profound impact than just lower intercooler outlet temperatures.

You asked, CSF listened – All the Features You Need to Push the Limits
Several months ago, during the final design stage of CSF’s new manifold, owner of CSF, Ravi Dolwani, hopped on a plane to Texas to attend the TX2K drag race invitational. Included at this year’s event was an A90 Supra class. Ravi went to speak with Supra owners and find out what they wanted out of an upgraded performance manifold. He came back to CSF following the race weekend, and worked with long time design partner and CSF customer, VF Engineering, to implement a host of features that took the performance benefits and capabilities of the new CSF manifold to an even higher, industry-leading level.

A handful of cars at TX2K had blown their engines due to the way their nitrous systems were plugged into their vehicles. With the OEM plastic manifold, a single spray system is most commonly used as threading into plastic to insert an injector node is already very difficult to install properly. The single fogger system, more often than not, will create unequal distribution of spray in the engine, either giving some cylinders too much or too little spray. This will increase the chance of severely damaging the engine.

 

An extruded fuel rail is included with the CSF manifold. It can be attached to the outlet side of the manifold. The AN-8 fuel rail comes with feed and return -8 internal hex plug fittings from Radium Engineering for a plug and play installation.

Fuel rail aperture for each cylinder is an optimized 7mm opening for compatibility with most commonly used high performance injectors
CSF recommends using Injector Dynamics (ID) injectors for the best performance – the most commonly used injector for this engine has been ID model # 1050.34.14.14.6 (qty 6)
Anodized CNC machined injector hats (qty 6) are included in the supplied hardware kit to accommodate short height injectors aka “shorties”

On the side of the manifold inlet, CSF has included a 3 port pad into the machining of the tank. This can be used to measure additional parameters or as an additional vacuum source. These three 1/8th NPT ports can be plugged with the included hardware kit if they are not used.

Imagine having to remove your manifold every time you wanted to change your oil, especially if your vehicle is used in motorsports where oil changes occur more often. CSF thought of its customer base during the design phase and have incorporated a recessed design towards the back of the manifold that for allows easy access to the spin-off oil filter. A counter balanced design protrusion above the recess was simulated in SolidWorks CFD software to ensure smooth air delivery into the rear of the core for the best possible cooling effect.

Another exclusive feature of the CSF manifold is the inclusion of an air divider welded into the inlet side tank of the manifold. With the length of the design, the engineers at VF Engineering wanted to make sure that the volume and velocity of air received to the back of the manifold to cylinder areas four, five, and six would be equal to the airflow passed through the front half of the manifold for cylinders one, two, and three. After extensive simulations in SolidWorks CFD software, an air divider was added to the design to ensure the best possible and equal cooling performance to each cylinder of the engine.

Two 1/8th NPT ports are located on the top of the back water plate. These can be used to measure inlet/outlet water temps as well as used as breather ports to help in the bleeding procedure to ensure all air has been cleared from the water system. 1/8th NPT plugs come included in the supplied hardware kit. Please follow OEM BMW or Toyota bleeding procedure which takes roughly 15 minutes to complete.

Included in the supplied hardware kit is several brackets, bolts, washers, and mounting posts to be able to install the OEM and OEM-style engine covers. This is an industry-exclusive feature to the CSF x VF Engineering design, and was extremely difficult to not only engineer, but to manufacture as well. An array of items come vacuum packaged with corresponding letters listed on an easy to use Bill-of-Materials List (BOM) along with exploded diagrams and a simple order of operation procedure list to follow for installation. Made with racers and DIY enthusiasts in mind.

Custom Color Options, From the Leader in BMW Cooling Customization
CSF has become the industry leader and innovator of custom finished cooling products. We first started with our most popular BMW S55 Charge-Air Cooler, then expanded to other BMW models such as our F1X M5/M6 and our latest F9C M5/M8 Charge-Air Cooler systems. Most of the same custom finishes can be ordered on CSF’s new B58 “Super Manifold.”

These manifolds cannot be anodized
CSF is not responsible for warranties for manifolds coated by anyone other than CSF
Lead time is 3-4 weeks depending on finish selection

CSF B58 Charge-Air Cooler Manifold Features (CSF #8200)
Utilizes a High Performance, Motorsports-Grade Bar/Plate Air-to-Water Intercooler Core
Double the Capacity of the OEM Core (12 Rows of Water Cooling vs. OEM 6 Rows)
Significantly Lower Pressure Drop Across the Core Compared to OEM
Designed in SolidWorks Using Computational Fluid Dynamics (CFD)
Integrated Air Divider in Inlet Tank Evenly Distributes Airflow Throughout the Core
Easy Access to Spin-Off Oil Filter for Quick Oil Changes – No Need to Uninstall Manifold Every Oil Change
Counter Balanced Design for Optimized Airflow
Integrated Sensor Pad with Three 1/8″ NPT Ports to Measure Additional Parameters
Included Optional Fuel Rail for Top Feed Port Injection
Individual Port Injection Bungs on Each Cylinder Runner (Comes Pre-Plugged)
Individual 1/8″ NPT Ports on the Top of Each Cylinder Runner for Nitrous or Meth Injection
Allows for Even Spray Distribution and Control for Maximum Performance and Engine Protection
Individual 1/8″ NPT Breather Ports for Both Inlet/Outlet Water Connections on Back of Manifold for Easy Air-Bleeding of the System
Plug-and-Play design, Requiring No Modifications to Install
Includes Hardware and Installation Kit with Picture Diagrams Containing 28 Different Parts for Easy Installation
Can be Used With OEM or Aftermarket Engine Covers (with OEM Connections)

View full details